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Abstract1

Autonomous sustained oscillations are ubiquitous in living and nonliving sys-2

tems. As open systems, far from thermodynamic equilibrium, they seem to defy3

entropic laws which mandate convergence to stationarity. We present structural4

conditions on network cycles which support global Hopf bifurcation, i.e. global5

bifurcations of non-stationary time-periodic solutions. Specifically, we show how6

monotone feedback cycles of the linearization at stationary solutions cause global7

Hopf bifurcation, for suitably large coefficients.8

We conclude with four example networks involving fast feedback cycles of9

length three and larger: Oregonator chemical reaction networks, Lotka-Volterra10

ecological population dynamics, citric acid cycles, and a circadian gene regulatory11

network. Reaction kinetics are not limited to mass action type.12
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1 Introduction and main result1

Network graphs are a common modeling device to describe dependencies of certain2

sub-units among each other. Vertices indicate those sub-units. Directed edges indicate3

coupling directions, or positive and negative signs of influence. Popular examples in4

a differential equations context are chemical reaction systems, neural networks, power5

grids, and many others. Where emphasis may have been on equilibration and steady6

state behavior, originally, more recent focus has shifted much towards the complexities7

of temporal and spatial patterns of the collective vertex behavior. The main objective,8

in the present paper, is to explore the potential of network structures, as such, towards9

autonomously time periodic network responses. Particulars of coupling parameters will10

play a subordinate role in that quest. Mostly we address large ranges of parameters.11

A slow-fast constraint, however, will emphasize a select feedback cycle in the network.12

Let us be more specific. Chemical reaction networks, for example, take the form13

(1.1) ẋ = f(x) =
∑
j

(yj − yj)rj(x)

with positive concentration vectors x of the metabolites xm, m = 1, ...,M, finitely many14

nonnegative stoichiometric coefficient vectors yj 6= yj ∈ RM , and positive reaction rate15

functions16

(1.2) rj > 0 .

In chemical notation, the j-th summand in (1.1) accounts for the reaction17

(1.3) j : yj1X1 + . . .+ yjMXM −→ yj1X1 + . . .+ yjMXM .

One possibility to view (1.1) as a network takes the metabolites xm, as vertices, and18

dependencies of fm on xm′ , as directed edges m′ → m. See our general setting (1.14)19

below. Another possibility, suggested by (1.3), is to take the vectors y, y as vertices,20

with reaction arrows as edges. See (1.10) below.21

Educts or inputs m of reaction j are defined by nonzero yjm > 0, and outputs by22

nonzero yjm. Nonzero yjm = yjm describe a catalyst m, for which reaction j does23

not affect xm. Strong autocatalysis of m, which catalyzes its own net production, is24

described by25

(1.4) yjm > yjm .

Mass action kinetics, prevalent in large parts of classical anorganic chemistry, and in26

gas phase reactions in particular, is defined by27

(1.5) rj(x) = kjx
yj := kjx

yj1
1 · . . . · x

yjM
M ,

usually for integer-valued yj, yj, with the convention x0m := 1. The rate coefficients28

kj are assumed to be strictly positive; see (1.2). Reactions catalyzed by enzymes,29
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ubiquitous in biological metabolic networks, allow for more general Michaelis-Menten1

kinetics of the form2

(1.6) rj(x) = kj
∏
m

(xm/(1 + cjmxm))yjm

with saturation coefficients cjm > 0. Usually yjm ∈ {0, 1}, and often the denominator3

is linearized to become 1 + cTj x. We note how (1.6) reduces to mass action (1.5), for4

cjm = 0. The partial derivatives always satisfy5

(1.7) rjm := ∂xmrj > 0 ⇐⇒ yjm > 0.

Enzymatic inhibition of rj by xm, however, is characterized by yjm = yjm and a factor6

1/(1+cjmxm), so that rjm < 0 instead. See section 5 for a more detailed discussion. For7

in-depth information on the rich subject of chemical reaction kinetics we refer to the8

currently 43 volumes of the book series Comprehensive Chemical Kinetics [CCK]. For9

a comprehensive background on chemical reaction networks see [Fei19], by a leading10

pioneer in the field.11

Thermodynamics of closed systems advocates convergence to steady state equilibria x∗12

of (1.1), i.e.13

(1.8) 0 =
∑
j

(yj − yj)rj(x∗),

due to a relative entropy Lyapunov function14

(1.9) V (x) :=
∑
m

fm(x) · v(xm/x
∗
m),

with v(ξ) := ξ log ξ − ξ + 1. The Lyapunov function V has been established in [HJ74]15

under the assumptions of mass action kinetics (1.5) and the following complex balance16

condition (1.10). From (1.3) we recall how the stoichiometric vectors yj, yj may be17

taken as vertices of the complex graph C, possibly including the complex yj = 0 and/or18

yj = 0. Note how identical vectors yj or yj for different j may describe the same vertex19

complex. The directed edges j of C are simply the reaction arrows (1.3) of standard20

chemical notation. Then complex balance requires the existence of an equilibrium21

x∗ > 0 such that22

(1.10)
∑

j: yj=y

rj(x
∗) =

∑
j′: yj′=y

rj′(x
∗)

balances, at every nonzero complex y. In other words, the total production rate of the23

complex y = yj as an output of reactions j, balances the total consumption rate of the24

same complex y = yj′ , as an input of other reactions j′ 6= j.25

Detailed balance in reversible reaction systems j±: yj± � yj± , where yj+ = yj− and26

yj− = yj+ for all j±, is a special case of complex balance, already considered by27

[Weg1902]. It requires rj+(x∗) = rj−(x∗) for every reversible pair j±. For reversible28
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monomolecular cycles yj+ = ej, yj− = ej+1 , j (mod N) and mass action kinetics,1

detailed balance amounts to the famous Wegscheider condition2

(1.11)
N∏
j=1

k+j =
N∏
j=1

k−j ,

which prevents oscillations. Wegscheider’s arguments for (1.11) were based on thermo-3

dynamic considerations on irreversibility, on the microscopic level. It is a lasting merit4

of [Hir1911] to point at the possibility of damped oscillations, once the Wegscheider con-5

straints (1.11) are strongly violated. Our emphasis below on unidirectional N -cycles,6

as a cause for global Hopf bifurcation, is essentially based on this insight.7

In passing we note how reversible cycles lead to Jacobi Systems8

(1.12) ẋm = fm(xm−1 , xm, xm+1),

for m (mod N) with strictly positive off-diagonal partial derivatives ∂xm±1fm. See9

[FuOl88] for a detailed study. Standard mass action makes10

(1.13) fm = k+m−1xm−1 − (k−m + k+m)xm + k−m+1xm+1

linear, and x1 + . . . + xN ≡ const is stoichiometrically preserved. Spectral analysis,11

similar to the case β = +1 in proposition 3.1 below, then implies stability of steady12

states, due to the presence of a positive (left) kernel vector. Alternatively, complex13

balance for the unit vector complexes ym = em can be invoked. Note how the addition of14

strongly, autocatalytic diagonal terms likeXm → 2Xm can lead to sustained oscillations15

and instability. Similar remarks apply toN -cycles with general monotone reaction rates16

r±j .17

Complex balance is clearly sufficient for x∗ to be a steady state (1.8) of (1.1). Notably18

[Mie17] has much extended the ODE stability results, for the mass action Lyapunov19

function V in (1.9), to a reaction-diffusion PDE context under Neumann boundary20

conditions and based on a general observation in [Ali79]. The extension includes ex-21

ponential convergence results and the presence of stoichiometric invariant subspaces.22

Our present paper will remain in the above ODE setting, for simplicity of presentation.23

Based on fast N -cycles, we study the appearance of time periodic solutions, instead of24

equilibration, beyond the variational complex balance setting (1.10).25

Experimental evidence for chemical oscillations has become overwhelming, by now26

[Zha91]. We recall a few highlights. As early as 1828, Fechner has observed polarity27

reversals in an electro-chemical experiment [Fe1828]; see also [He1901]. The celebrated28

integrable Lotka-“Volterra” model [Lot1920] has been described by Lotka, originally,29

as a hypothetical model for sustained time-periodicity in a chemical reaction with mass30

action kinetics, and not in the tradited Volterra context [Vol1931] of predator-prey pop-31

ulation dynamics. A first chemical experiment with sustained autonomous oscillations32

was described in [Bray1921]. Experiments on the now famous Belousov-Zhabotinsky33

reaction (BZ) by Belousov in the 1950s were rejected, on “obvious” thermodynamic34

grounds. A decade later, Zhabotinsky’s work rehabilitated the findings by Belousov,35

3



and got published [Zha64]. The famous Brusselator “model” [Lef68, PriLef68] for the1

BZ reaction, by Prigogine and co-workers, had originally been designed to exhibit and2

numerically investigate Turing instability [Tur52]. A model for observed glycolytic os-3

cillations in the metabolism of yeast cells was suggested by [Sel68]. All the above4

considerations were based on phase plane analysis, i.e. on reaction systems (1.1) with5

M = 2 metabolites m = 1, 2. The article [Hig67] provides a comprehensive survey and6

discussion of the planar possibilities.7

The chemically more realistic Oregonator model [FN74] of the BZ-reaction is a first ex-8

ample of chemical reaction networks involving at least M = 3 metabolites; see section9

5.1. Eigen’s hypothetical hypercycle [Eig71], of course, also known as the replicator10

equation, features cycles of any length N in an attempt to model molecular evolution;11

see also the book [HS98]. It can be seen as a projective version, for population per-12

centages, of general Lotka-Volterra models [Oli14] discussed in section 5.2. Oscillations13

in the famous citric acid cycle (CAC, Krebs cycle) involving eight metabolites have14

been described, experimentally, by [MacDetal03]; see section 5.3 below. In section 5.415

we discuss a gene regulatory network for circadian rhythms in mammals [Miretal09].16

Non-isothermal oscillations, where the temperature dependence of the rate functions17

rj plays a decisive role, have been studied much, in the PDE context of spatially het-18

erogeneous catalysis. See [Aris75, Fie83] for experimental and mathematical results,19

as well as [IE95] for a survey of the early developments.20

Theoretical results on autonomous time-periodic oscillations are rare. Mostly, they21

establish the existence of an equilibrium f(x∗) = 0 with purely imaginary eigenvalues,22

by the M -dimensional Routh-Hurwitz criterion. Tools are symbolic computations of23

computer algebra type. Classical local Hopf bifurcation [Hopf1942, MaMcC76, CR77]24

then is supposed to infer periodic solutions. For mass action kinetics (1.5), however,25

the computational difficulties seem to grow prohibitively with dimension. Even best26

analytic results like [GES05, EEetal15] require advanced techniques and concepts from27

computational algebra, and do not proceed beyond M = 3, 4. They also fail to ad-28

dress standard prerequisites of local Hopf bifurcation, like spectral nonresonance and29

transverse crossing conditions. Instead, our approach will avoid the restrictions of mass30

action kinetics, and will explore fast feedback cycles in networks as a sufficient indicator31

of global Hopf bifurcation.32

Our setting generalizes (1.1) as follows. Consider ODE networks33

(1.14) ẋm = fm(xI(m)),

m = 1, . . . ,M, with C1-nonlinearities fm. Here xI(m) ∈ R|I(m)| indicates that fm only34

depends on the component xm′ of x ∈ RM if, and only if, m′ is in the set I(m) ⊆35

{1, . . . ,M} of inputs of fm.36

This defines a di-graph Γ with metabolite vertices m and directed edges m′ → m from37

m′ ∈ I(m) to m. We explicitly allow, but do not impose, self-loops m ∈ I(m). The38

graph Γ and the setting (1.14) are commonly used in the description of gene regulatory39

networks; see for example [FieMKS13].40
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Let f(x∗) = 0 be a stationary solution of (1.14). Then the Jacobian fx(x
∗) = (fmm′)1

is given by the partial derivatives2

(1.15) fmm′ := ∂xm′fm(x∗),

for 1 6 m,m′ 6 M . Note fmm′ = 0, unless m′ ∈ I(m). Based on nonzero entries3

fmm′ ,m
′ ∈ I(m), of the Jacobian Fx(x

∗), we can now identify fast feedback cycles in4

the di-graph Γ, which play the central role for our results on fast oscillations.5

1.1 Definition. Let m = (m1 . . . mN) denote an N-tuple of distinct metabolites6

mk ∈ {1, . . . ,M}, 2 ≤ N ≤M . We call m an N-cycle if7

(1.16) βk := fmkmk−1
6= 0

holds, for all indices k (mod N). We also say the N-cycle possesses positive or negative8

feedback, depending on the sign of9

(1.17) β :=
N∏
k=1

βk 6= 0.

For a nondegenerate N-cycle we require, in addition, nonzero self-loops10

(1.18) ak := −fmkmk
6= 0,

for all k = 1, . . . , N . Motivated by reaction network dynamics, we call the number11

0 ≤ Naut ≤ N of ak < 0, i.e. the number of strictly positive self-feedbacks fmkmk
, the12

autocatalytic number of the nondegenerate N-cycle m.13

We can now describe the setting of our main result, theorem 1.2 below. It is of crucial14

importance here, and deviates significantly from previous work in the area, that we15

consider the partials fmm′ as free parameters which may vary independently of the16

steady state x∗ and, to some extent, independently of each other. More precisely we17

consider networks ẋ = f(ε, a, x) depending on a parameter a > 0 and a small parameter18

ε > 0, such that19

(1.19) 0 = f(ε, a, x∗)

possesses a parameter-independent steady state x∗. For the Jacobian at x∗ we assume20

an expansion21

(1.20) fx(ε, a, x
∗) =

(
A + εA′ εB

C εD

)
,

in block matrix form, with small ε > 0. Here only A = A(a) depends on the parameter22

a. Specifically, we assume that the N × N block matrix A = (fmm′)1≤m,m′≤N of23

fx, at ε = 0, describes a nondegenerate N -cycle, det A 6= 0, relabeled such that24

m = (1 . . . N) in definition 1.1. We call the N -cycle fast, because we require all other25

entries of A, not supported on the N -cycle, to be zero:26

(1.21) fmm′ = 0 for 1 ≤ m,m′ ≤ N, unless m′ ∈ {m,m− 1} (mod N).
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The precise scaling of the lower left block C is going to be irrelevant, by a similarity1

transformation.2

The mathematical motivation for our emphasis on cycles, in addition to [Hir1911],3

comes from the Quirk-Ruppert-Maybee theorem; see the beautiful account in [JKD77].4

That theorem addresses matrices M with prescribed sign structure of the entries. It5

characterizes spectral stability Re spec M ≤ 0 by the three requirements of nonpositive6

diagonal elements, nonpositive products over 2 cycles, and vanishing products β over7

N -cycles, for N ≥ 3. Our results can be seen as an attempt to assert global Hopf8

bifurcation when that third condition is violated, i.e. for sign β = ±1 on A.9

The linearization10

(1.22) ξ̇ = Aξ, A =


−a1 β1
β2 −a2

. . . . . .

βN −aN

 ,

on the fast N -cycle constitutes a linear cyclic monotone feedback system. See [M-PS90]11

for a detailed spectral analysis and deep nonlinear consequences. For simplicity, we12

perform a linear rescaling of ξ ∈ RN and time t to normalize the off-diagonal N -cycle13

elements of A such that14

(1.23)

β2 = . . . = βN = +1 and

β =
N∏
m=1

βm = β1 = ±1;

see (1.17). In particular the feedback sign becomes β = β1 = ±1. We also assume the15

bifurcation parameter a > 0 to satisfy the scaling invariant normalization16

(1.24) am(a) = aαm,
N∏
m=1

αm = (−1)Naut , aN =

∣∣∣∣ N∏
m=n

am/
N∏
m=1

βm

∣∣∣∣ ,
along the original diagonal of A; see (1.18). For the normalized diagonal elements17

αm 6= 0 we use the abbreviations 〈·〉 and 〈·〉h for their arithmetic and harmonic means.18

We assume19

(1.25)

〈α〉 :=
1

N

N∑
m=1

αm 6= 0, σ := sign〈α〉,

〈1/α〉 :=
1

N

N∑
m=1

1/αm 6= 0,

〈α〉h := 1/〈1/α〉, σh := sign〈α〉h,

whenever σ, σh appear.20

In addition to the signs of the above arithmetic and harmonic means, our oscillation21

conditions will only involve the length N > 3 of the catalytic cycle, and the count Naut22

of diagonal strongly autocatalytic entries αm < 0. Specifically, we assume any one of23

the following four cases to hold.24
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(i) For positive feedback β = +1 and N 6≡ 0 (mod 4):1

(1.26)
Naut = 2[N/4] + 1 + σh, or

|Naut − 2[N/4]− 1| > 1.

(ii) For positive feedback β = +1 and N ≡ 0 (mod 4):2

(1.27)
Naut = 2N/4− σ + σh, or

|Naut − 2N/4 + σ| > 1.

(iii) For negative feedback β = −1 and N 6≡ 2 (mod 4):3

(1.28)
Naut = 2[(N + 2)/4] + σh, or

|Naut − 2[(N + 2)/4]| > 1;

(iv) For negative feedback β = −1 and N ≡ 2 (mod 4):4

(1.29)
Naut = 2(N + 2)/4− 1− σ + σh, or

|Naut − 2(N + 2)/4 + 1 + σ| > 1.

Here the signs σ, σh = ±1 of the arithmetic and harmonic means are assumed to be5

nonzero, respectively, whenever they appear. Specifically, this assumption occurs as6

follows.7

(1.30)
σ = ±1 for N ≡ 1− β (mod 4),

σh = ±1 for (−1)Naut = β.

Concerning the open parameter interval a ∈ (a, a) where we will assert global Hopf8

bifurcation, we distinguish the following cases. We fix9

(1.31)
a := 0 for N 6≡ 1− β (mod 4),

a > 0 for N ≡ 1− β (mod 4),

with arbitrarily small a in the second case. Similarly, we fix10

(1.32)
a := +∞ for (−1)Naut = −β,
a < 1 for (−1)Naut = β,

with arbitrarily small 1− a in the second case.11

1.2 Theorem. Consider a network (1.14) with a fast nondegenerate N-cycle A on12

m = (1 . . . N), N ≥ 3, of the Jacobian (1.20) – (1.22) at the (ε, a)-independent steady13

state x∗ in (1.19). Assume hyperbolicity of the lower right block D in the Jacobian14

(1.20), i.e. 0 6∈ Re spec D. Let the normalization (1.23) and parameter assumptions15

(1.24), (1.30) – (1.32), on a > 0 hold.16

Then each of the cases (1.26) – (1.29) leads to the following conclusion. There exists17

ε0 > 0 depending on a, a such that for any fixed 0 < ε < ε0 the network (1.14) exhibits18

global Hopf bifurcation of nonstationary periodic solutions from the steady state x∗, for19

parameters a ∈ (a, a).20
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The precise notion of global Hopf bifurcation, in our setting, involves some subtleties1

which we clarify in section 2, definition 2.2. We recall some tools for global Hopf2

bifurcation there, as developed in [Fie85]; see theorem 2.3 and corollary 2.4. In section3

3 we collect the prerequisite spectral properties of cyclic monotone feedback systems,4

in the spirit of [M-PS90]. This enables us to prove theorem 1.2, as an application of5

corollary 2.4, in section 4. We conclude with the promised four applications, in sections6

5.1 – 5.4.7

Acknowledgement. The present results are based entirely on many pleasantly chal-8

lenging and always inspiring discussions with Alexander Mielke, including – but not9

limited to – his beautiful contribution [Mie17]. The present paper is dedicated to him10

in deep gratitude and long lasting friendship. We are also indebted to Marty Feinberg,11

for sharing his pioneering insights so generously and encouragingly, over so many years,12

and to Nicola Vassena for many helpful comments concerning network dynamics. Pa-13

tricia Hăbăşescu performed the typesetting with outstanding dedication and diligence,14

and some expert help from Alejandro Lopez. This work was partially supported by15

DFG/Germany through SFB 910 project A4.16

2 Global Hopf bifurcation17

We introduce the main tool in our analysis of autonomous time periodic oscillations.18

Skipping proofs, we adapt results on global Hopf bifurcation going back to [Fie85],19

based on earlier generic results by Yorke and others [M-PY82]. Specifically, we intro-20

duce virtual periods, and the center index 2 (pronounced “zhong”). Our main abstract21

results are summarized in theorem 2.3 and corollary 2.4 below. See also [Fie88], section22

3, for a more detailed survey.23

In this section we consider general vector fields24

(2.1) ẋ = f(a, x)

on x ∈ RN , with scalar parameter a ∈ R, and continuous f, fx. We call x∗ stationary25

at a, or steady state, if f(a, x∗) = 0. We call x(t) periodic with a period T > 0 if x(t)26

is nonstationary and27

(2.2) x(t+ T ) = x(t)

holds for all real t. The set of all periods T then takes the form T = kp, with k ∈ N,28

where p > 0 is called the minimal period of x(t). We call q > 0 a virtual period29

of x(t) at a, if q is the minimal period of some pair (x, y), where y(t) satisfies the30

(nonautonomous) linearized equation31

(2.3) ẏ(t) = fx(a, x(t))y(t),

for all real t. We also use this terminology if x(t) ≡ x∗ happens to be stationary. Steady32

states x∗ with virtual periods are called Hopf points : indeed they possess nonzero purely33
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imaginary eigenvalues. In conclusion, virtual periods are the minimal periods of the1

induced flow on the tangent bundle.2

It turns out that virtual periods, unlike minimal periods, are closed under limits.3

2.1 Proposition. Let qn be a virtual period of xn at parameter an. Assume conver-4

gence:5

(2.4) (an, xn, qn)→ (a∞, x∞, q∞).

Then q∞ > 0, and q∞ is a virtual period of x∞ at parameter a∞.6

Standard Hopf and period doubling bifurcations, for example, show that the proposition7

fails for minimal periods. Indeed, standard Hopf bifurcation, from a transverse crossing8

of a pair of simple and nonresonant eigenvalues ±i of fx(a, x
∗), is indicative of the9

virtual period 2π at x∗.10

Henceforth we require all Hopf points (a∗, x
∗) of (2.1) to be nondegenerate, i.e.11

(2.5) det fx(a∗, x
∗) 6= 0.

This allows us to continue the steady state x∗ = x∗(a), locally, by the implicit function12

theorem. Let13

(2.6) µ(a) := #{Re spec fx(a, x
∗(a)) > 0}

count the strictly unstable eigenvalues at (a, x∗(a)), with algebraic multiplicity. We14

now require Hopf points to be isolated, in R×X. Then µ(a) is the unstable dimension,15

or Morse index, of the hyperbolic steady state x∗(a), for nearby a 6= a∗ . This allows16

us to define the crossing number17

(2.7) χ(a∗) := 1
2

lim
δ↘0

(µ(a∗ + δ)− µ(a∗ − δ)) = 1
2
(µ(a+∗ )− µ(a−∗ ))

of the Hopf point x∗ at a = a∗ . This is the net number of eigenvalue pairs crossing18

the imaginary axis from left to right, as a increases through a∗. Finally, following19

[M-PY82], we define the center index of the Hopf point (a∗, x
∗) as20

(2.8) 2(a∗, x
∗) := (−1)µ(a∗) · χ(a∗)

Fix any open subset U of R×RN , such that U contains the whole nonstationary periodic21

orbit, with any point on it. We clarify our notion of global versus local continua of22

periodic solutions and Hopf points in U as follows. Denote23

(2.9)
Q := {(a, x, q) | q > 0 is a virtual period of (a, x) ∈ U} ,
P := {(a, x) | (a, x, q) ∈ Q} .

In other words, P = q̌Q̃, where the projection q̌ omits the q-component of Q.24

2.2 Definition. A connected component C of P, i.e. of the periodic solutions and Hopf25

points in U , is called local in U , if the closure of C is compactly contained in U and26

the virtual periods in C are bounded above. In other words, the lift q̌−1C is compactly27

contained in Q. Connected components C which are not local are called global.28
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Note that proposition 2.1 asserts compactness of local components C.1

2.3 Theorem. Consider the flow (2.1) and assume all Hopf points in U are nonde-2

generate, as in (2.5), and isolated. Let C be a local connected component of the periodic3

solutions and Hopf points P in U . Then4

(2.10)
∑
C

2 = 0,

where the sum ranges over the finitely many Hopf points in C, if any.5

2.4 Corollary. In the setting of theorem 2.3, assume P contains only finitely many6

Hopf points and7

(2.11)
∑
P

2 6= 0.

Then P possesses at least one global connected component C which also contains a Hopf8

point. We call this case global Hopf bifurcation in U .9

To derive the corollary from the theorem, let C` enumerate the finitely many disjoint10

connected components of P , which contain Hopf points. Suppose, indirectly, that each11

C` is local. Then (2.10) implies12

(2.12)
∑
P

2 =
∑
`

∑
C`

2 = 0,

contradicting (2.11). Hence at least one C` is global, by theorem 2.3.13

The proof of theorem 2.3 is based on generic approximation. The cancellation (2.10)14

of center indices on compact connected components C follows from the same property15

in the generic situation, by approximation. See [M-PY82] for the generic case. This16

requires a parametrized version of the Kupka-Smale theorem, via Thom-transversality,17

and a detailed degree argument which carefully distinguishes periodic orbits with ori-18

entable and nonorientable unstable manifolds. The resulting global Hopf components of19

orientable periodic orbits in P are called snakes, in [M-PY82]. The only discontinuities20

of minimal periods, in the generic case of snakes, occur at period doubling bifurca-21

tions. By generic approximation, this reveals jumps by factors 2 as the only possible22

discontinuities of virtual periods, in the general case of nongeneric snake limits.23

It is the elimination of non-virtual periods T = kp which motivated the introduc-24

tion of virtual periods, originally. Competing topological results, based on the J-25

homomorphism of S1-equivariant degree theory, studied continua of triples (a, x, T )26

with (not necessarily minimal) periods T of (a, x) as in (2.2); see [AY78] for the origi-27

nal, and [IV03] for more recent developments with many references. The “jug-handle”28

by [AllY84] exhibits a continuum with bounded (a, x) and unbounded T , whereas vir-29

tual periods remain bounded. They construct a compact loop of periodic orbits (a, x),30

where the two branches generated at a saddle-node bifurcation re-unite, at a period-31

doubling. Any such loop generates an unbounded continuum of triples (a, x, T ) where32
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T traverses all multiples 2kp of the minimal periods p, for k ∈ N0. The virtual peri-1

ods, however, remain bounded: they are given by p and, at the period doubling only,2

{p, 2p}.3

Of course our notion of “globality” depends on the choice of the underlying open4

domain U ⊆ R× RN where we study our continua. Indeed we can only assert a global5

trichotomy for any global component C ⊆ U :6

(2.13)

(i) either C is unbounded, or

(ii) C is bounded, but ∂C ∩ ∂U 6= ∅, or else

(iii) clos C is compactly contained in U with unbounded virtual periods.

7

Option (iii) of the global trichotomy (2.13) is particularly interesting. For example,8

consider a convergent sequence (an, xn) → (a∞, x∞) of Hopf points with purely imag-9

inary eigenvalues ±iωn, such that ωn ↘ 0. The steady state x∞ then features an10

eigenvalue ω∞ = 0 with algebraic multiplicity at least two; in the simplest interesting11

case this is a Bogdanov-Takens point. The virtual periods qn := 2π/ωn converge to12

+∞, of course.13

More generally, suppose (an, xn) are nonstationary periodic with minimal periods pn →14

+∞. Suppose (an, xn) → (a∞, x∞) becomes stationary, in the limit, but some part of15

the periodic orbit xn(t) of xn does not converge to x∞. In the simplest interesting16

case this may happen by convergence of xn(.) to a homoclinic orbit attached to the17

steady state x∞ . This example is closely related to the Takens-Bogdanov case, which18

generates small amplitude homoclinic orbits. For global consequences in vector fields19

with two real parameters see [Fie86, Fie96].20

Suppose the orbits xn(.) remain bounded, and stay away from any steady states. Re-21

markably pn → ∞ can still occur, along a continuum of periodic orbits and without22

any bifurcations affecting the minimal periods pn. Such blue sky catastrophes have23

first been constructed by Turaev and Shilnikov, in 1995, in a structurally stable way24

involving a single parameter. See the survey [SST14].25

In section 4, we will apply theorem 2.3 to the situation of theorem 1.2. In particular26

we note how the crossing numbers in (2.11) simply add up to a net crossing number,27

along a steady state x∗ which does not actually depend on a, as long as x∗ remains28

nondegenerate. To account for the slow-fast dichotomy (1.20) of the linearization29

fx(ε, a, x
∗) we will also narrow attention from a ∈ (−∞,+∞) to 0 < a ∈ (a, a).30

11



3 Linear feedback cycles1

In this section we collect some spectral properties of the normalized nondegenerate2

N -cycle3

(3.1) A = A(a) =


−aα1 β

1 −aα2

. . . . . .

1 −aαN

 ,

with a > 0,
∏
αm = (−1)Naut , and β = ±1.4

See (1.20) – (1.25) and theorem 1.2. Proposition 3.1 recalls the general pairwise or-5

dering of the eigenvalues λk of A by their real parts, due to [M-PS90]. Proposition6

3.2 addresses crossings of eigenvalues through the imaginary axis, at a = 0 and a = 1.7

Proposition 3.3 collects the limits, at a = 0+, 1±, and ∞, of the strict unstable dimen-8

sions µ(a) introduced in (1.25):9

(3.2) µ(a±0 ) := limµ(a), for 0 < ±(a− a0)↘ 0.

We conclude in proposition 3.4, by showing how the presence of a zero eigenvalue, at10

a = 1, prevents all further purely imaginary eigenvalues to occur for any a ≥ 1.11

The zero number z(ξ), an integer-valued Lyapunov function for ξ̇ = Aξ, is the crucial12

tool in the deep spectral (and nonlinear) analysis of [M-PS90]. In our normalization13

(3.1), consider positive feedback β = +1 first and let 0 6= ξ ∈ RN . Then z(ξ) ≥ 014

denotes the (even) number of strict sign changes in the ordered cyclic sequence of15

ξ-components ξm, with m (mod N). For negative feedback β = −1, however, we16

modify that count between ξN and ξ1, only, to account for a strict sign change between17

βξN = −ξN and ξ1, instead. In particular z(ξ) ≥ 1 becomes odd. In summary we18

obtain19

(3.3) (−1)z(ξ) = β,

for both feedback cases, β = ±1.20

3.1 Proposition. Assume negative feedback, β = −1. Then the eigenvalues λk of A21

can be ordered in pairs, repeated with algebraic multiplicity, such that22

(3.4) Reλ0 ≥ Reλ1 > Reλ2 ≥ Reλ3 > . . .

The associated real eigenvectors ξk of λk can be chosen to satisfy23

(3.5) z(ξ2k) = z(ξ2k+1) = 2k + 1,

for indices ranging from 0 to N −1. Here ξ2k and ξ2k+1 refer to the real and imaginary24

parts of the complex eigenvectors, in case λ2k+1 = λ2k are conjugate complex, and25

not real themselves. All eigenvalues are algebraically simple, except for some possibly26

double real eigenvalues. Simple real eigenvalues are labeled in strictly decreasing order.27

12



For positive feedback β = +1, the analogous ordering reads1

(3.6) λ0 > Reλ1 ≥ Reλ2 > Reλ3 ≥ Reλ4 > . . . .

with real eigenvectors ξk of λk satisfying2

(3.7) z(ξ2k−1) = z(ξ2k) = 2k,

for resulting indices in {0, . . . , N − 1}.3

Proof. See [M-PS90]. ./4

To get slightly more specific we write the characteristic equation for the characteristic5

polynomial p of A from (3.1) as6

(3.8)
0 = p = det(λ−A(a)) =

N∏
m=1

(λ+ aαm)− β =

= λN + 〈α〉NaλN−1 + . . .+ (−1)Naut〈1/α〉NaN−1λ+ (−1)NautaN − β .

The case a = 0 in (3.8), with the N -th roots of unity λNk = β = ±1, k = 0, . . . , N − 1,7

as simple eigenvalues, provides an instructive example for the two feedback cases of8

proposition 3.1.9

3.2 Proposition. Consider the normalized nondegenerate N-cycle A(a) of (3.1), for10

a ≥ 0. Then the following holds true.11

(i) An eigenvalue λk = 0 occurs if, and only if,12

(3.9) (−1)Naut = β and a = 1.

The eigenvector ξk of λk = 0 satisfies13

(3.10) z(ξk) = Naut .

The eigenvalue λk = 0 is simple if, and only if,14

(3.11) 〈1/α〉 6= 0.

In that case, λk(a) crosses the imaginary axis transversely, at a = 1, with nonzero15

derivative16

(3.12) λ′k(1) = −1/〈1/α〉 = −〈α〉h

given by the harmonic mean; see (1.25).17

13



(ii) At a = 0, the eigenvalues λk(a) are given by the N simple roots of unity1

(3.13) λNk = β = ±1,

with k = 0, . . . , N −1. Their derivatives with respect to a, at a = 0, are all equal,2

given by the arithmetic mean3

(3.14) λ′k(0) = −〈α〉.

In particular, the purely imaginary eigenvalues λk = ±i which occur for N ≡4

0, 2 (mod 4) and β = +1,−1, respectively, cross the imaginary axis transversely,5

for arithmetic means 〈α〉 6= 0.6

Proof. We use expansion (3.8) of the characteristic polynomial.7

To prove (i), claim (3.9), we just insert λ = 0 in (3.8) and recall a ≥ 0. Algebraic8

simplicity claim (3.11) is equally obvious because 〈1/α〉 6= 0. Implicit differentiation9

of p(a, λ(a)) = 0 at a = 1, λ(1) = 0 yields10

(3.15) 0 = pa + pλλ
′ = (−1)NautNaN−1 + (−1)Naut〈1/α〉NaN−1λ′,

which proves (3.12).11

To prove (3.10) note that any eigenvector 0 6= ξ ∈ ker A of λ = 0 at a = 1 satisfies12

(3.16) αmξm = βmξm−1

for m (mod N), β1 = β, and β2 = . . . = βN = 1; see (3.1). Consider the case13

β = +1, α1 > 0, first. Then those 2 ≤ k ≤ N with strongly autocatalytic αk < 014

indeed provide precisely Naut sign changes in the cyclic sequence of ξm, for m (mod N).15

The remaining cases of (3.10) are proved analogously. This proves claim (i).16

To prove claim (ii), we insert a = 0 in (3.8) to obtain the algebraically simple N -th17

roots of unity λNk = β, k = 0, . . . , N − 1. Implicit differentiation of p(a, λ(a)) = 0 at18

a = 0, λN = β 6= 0, indeed yields19

(3.17) 0 = pa + pλλ
′ = 〈α〉NλN−1 +NλN−1λ′.

This completes the proof of the proposition. ./20

3.3 Proposition. At a =∞ we obtain the following limiting strict unstable dimension:21

(3.18) µ(∞) := lim
a→∞

µ(a) = Naut .

Assume any A(a), a ≥ 0, possesses an eigenvalue λk = 0, in the ordering of proposition22

3.1. Then (−1)Naut = β and a = 1, by (3.9). If we also assume 〈1/α〉 6= 0, as in (1.25),23

so that the harmonic mean σh = sign〈α〉h = ±1 exists, then the limiting strict unstable24

dimensions µ(1±) in (3.2) are25

(3.19) µ(1±) = k + 1
2
(1∓ σh) ,
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and the even/odd parity of k is given by1

(3.20) (−1)k = βσh .

In the limit a↘ 0 and for N 6≡ 1− β (mod 4), β = ±1, we obtain2

(3.21) µ(0+) = 2[(N − 1 + β)/4] + 1 + (1− β)/2 .

For N ≡ 1− β (mod 4) we assume σ = sign〈α〉 6= 0, as in (1.25), and obtain3

(3.22) µ(0+) = 2(N − 1 + β)/4− σ + (1− β)/2 .

Proof. To prove µ(∞) = Naut we invoke the characteristic equation (3.8). Trivially,4

−αm 6= 0 with m = 1, . . . , N enumerate the limits of λk(a)/a with k = 0, . . . , N − 1,5

for a→ +∞. This proves claim (3.18).6

To prove claim (3.19) we consider the simple eigenvalue λk = 0 at a = 1 with eigenvector7

ξk and z(ξk) = Naut, from proposition 3.2. In particular, the ordering of Reλk in8

proposition 3.1 implies µ(a) = k for the strict unstable dimension µ at a = 1. Our9

assumption 〈1/α〉 6= 0 in (1.25) also implies transverse crossing (3.12) of λk(a), at10

a = 1, so that11

(3.23) sign λk(a) = σh · sign(1− a),

for small |1 − a| > 0. Because proposition 3.1 excludes any other purely imaginary12

eigenvalues at a = 1, besides the simple eigenvalue λk(a) = 0, this proves claim (3.19).13

To prove (3.20) we observe that the absence of zero eigenvalues for 1 < a <∞ implies14

that µ(1+) and µ(∞) = Naut share the same parity. Therefore (3.19) implies (3.20) via15

(3.24) β = (−1)Naut = (−1)µ(1
+) = (−1)k · (−1)(1−σh)/2 = (−1)kσh.

It remains to consider µ(0+) with eigenvalues λ at a = 0 given by the simple roots16

of unity λN = β = ±1. For the strict unstable dimension µ(0), which ignores purely17

imaginary eigenvalues, elementary counting shows µ(0) = 2[(N−2+β)/4]+1+(1−β)/2.18

For N 6≡ 1 − β (mod 4), purely imaginary roots λk = ±i do not occur. Therefore19

[(N − 2 + β)/4] = [(N − 1 + β)/4] proves (3.21). For N ≡ 1 − β (mod 4), the purely20

imaginary pair (as all other roots) satisfies λ′k = Reλ′k = −〈α〉; see (3.14). Therefore21

(3.25) sign Reλ′k(a) = −σ,

for small a > 0, and hence µ(0+) = µ(0) + 1− σ. Insertion of our elementary count for22

µ(0) proves (3.22), and the proposition. ./23

3.4 Proposition. As in (3.19), (3.20) suppose any A(a), a ≥ 0 possesses an eigenvalue24

λk = 0, i.e. (−1)Naut = β and a = 1, with 〈1/α〉 6= 0.25

Then A(a) does not possess any other zero or purely imaginary eigenvalues, for 1 ≤26

a <∞, except that simple zero eigenvalue λk = 0 at a = 1.27
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Proof. Propositions 3.1 and 3.2(i) establish the claim at a = 1. We have to show that1

purely imaginary nonzero eigenvalues cannot occur, for any a > 1. We only consider2

the case of positive feedback, β = +1; the case β = −1 is analogous.3

Since (−1)Naut = β, positive feedback β = +1 implies Naut is even. Therefore (3.10)4

implies5

(3.26) z(ξk) = Naut = 2k′,

for the eigenvector ξk of λk = 0 at a = 1. The ordering (3.6), (3.7) of real eigenvalues6

implies7

(3.27) k ∈ {2k′ − 1, 2k′}

for the two real simple eigenvalues λ2k′−1 > λ2k′ , one of them being zero, at a = 1. We8

claim λ2k′−1 and λ2k′ straddle zero, for all a > 1: both eigenvalues remain simple, real,9

and satisfy10

(3.28) λ2k′−1 > 0 > λ2k′ .

Then the straddling eigenvalues λ2k′−1 , λ2k′ , in view of the ordering (3.6), (3.7), prevent11

any other real or complex eigenvalues from crossing the imaginary axis, at any a > 1,12

and the proposition will be proved.13

We prove our remaining claim (3.28) for σh = +1; the case σh = −1 is analogous.14

Parity property (3.20), (−1)k = βσh = +1, asserts k is even. Hence k = 2k′ in (3.27),15

and transverse crossing (3.12) implies16

(3.29) λ2k′−1 > 0 > λk = λ2k′ ,

for small a − 1 > 0. Absence of zero eigenvalues, for a > 1, together with the strict17

ordering and pairing of proposition 3.1, (3.6), preserves simplicity of the real eigenvalues18

and perpetuates (3.29) to all real a > 1. This proves the proposition. ./19

4 Main result: proof20

In this section we return to the original setting21

(4.1)

ẋ = f(ε, a, x) ,

0 = f(ε, a, x∗) ,

A(ε, a) = fx(ε, a, x
∗) =

(
A(a) + εA′ εB

C εD

)
of our main result, theorem 1.2, with the normalizations (1.22) – (1.24). We also recall22

the notation 〈α〉, 〈α〉h, of (1.25), (1.30) for the arithmetic and harmonic means of the23

diagonal elements −aαm of the fast N -cycle A, with signs σ, σh = ±1. For the choice24

(4.2) 0 < a ∈ J := (a, a)

16



of the parameter a, depending on the feedback sign β = β1 = ±1, with the remaining1

off-diagonal elements of A normalized to β2 = . . . = βN = 1, see (1.31), (1.32).2

To prove theorem 1.2 we proceed as follows. First we fix the open subset U ⊆ J ×RN ,3

where we seek global Hopf bifurcation, according to definition 2.2 and corollary 2.4. In4

lemma 4.1, we check the crucial assumption (2.11), i.e.5

(4.3)
∑
P

2 6= 0,

for the center indices 2 of the Hopf points in U , at ε = 0. An elementary perturbation6

argument will extend 4.3 to small enough 0 < ε < ε0, proving the theorem.7

Fix ε > 0 small enough. Let (a, x) ∈ E ⊆ J×RN denote the steady states f(ε, a, x) = 0,8

and distinguish the trivial steady state f(ε, a, x∗) = 0 from the complementary ones:9

(4.4) E∗ := J × {x∗}, Ec := E \ E∗.

Eliminating all nontrivial steady states Ec from further consideration, we define10

(4.5) U := (J × RN) \ Ec

as the open background set for global Hopf bifurcation. In other words, the trivial line11

E∗ is the set of steady states in U , and H := {(an, x∗) ∈ E∗ | (an, x∗) is a Hopf point12

of f(ε, an, ·)} is the set of Hopf points in U . Note that H is finite, for small enough13

0 < ε < ε0, by analyticity of the linearization A = fx(ε, a, x
∗) in a.14

4.1 Lemma. Let ε = 0. Then the number of Hopf points (an, x
∗) ∈ E∗ for the fast15

subsystem ε̇ = A(a)ξ is finite, and16

(4.6)
∑
n

2(an, x
∗) 6= 0,

under any of the assumptions (1.26)–(1.29).17

Proof. By transverse crossings of eigenvalues, in proposition 3.2, we may consider18

a = 0 in (1.31), and a = 1,∞ in (1.32), for ε = 0, without loss of generality. Let us19

consider the case (−1)Naut = −β, a = ∞, first, where proposition 3.2 asserts absence20

of zero eigenvalues of A(a), for all a ≥ 0. Then21

(4.7) 2(an, x
∗) = (−1)µ(an)χ(an)

all share the same n-independent prefactor22

(4.8) (−1)µ(an) = (−1)µ(∞) = (−1)Naut = −β.

Therefore the local crossing numbers χ(an) for a = 0 < an < ∞ = a just add up to a23

net crossing number χ :=
∑
χ(an), and24

(4.9) 2
∑
n

2(an, x
∗) = −2β · χ = −β · (µ(∞)− µ(0+)).

17



Comparison with proposition 3.3, (3.18), (3.21) and (3.22) shows µ(∞)− µ(0+) 6= 0.1

Indeed, consider β = +1 first, and assume N 6≡ 0 (mod 4). Then2

(4.10) µ(∞)− µ(0+) = Naut − 2[N/4]− 1 6= 0,

by the line of assumption (1.26) which does not contain σh. Similarly, forN ≡ 0 (mod 4)3

assumption (1.27), without σh, implies4

(4.11) µ(∞)− µ(0+) = Naut − 2[N/4] + σ 6= 0.

The case β = −1 is treated analogously, via assumptions (1.28), (1.29) without σh.5

In the alternative case (−1)Naut = +β, a = 1, a simple eigenvalue λk = 0 appears at6

a = 1. Proposition 3.3 guarantees absence of Hopf points, for a ≥ 1, i.e. µ(1+) = µ(∞).7

Proposition 3.2 asserts the transverse crossing direction signλ′k(α) = −σh 6= 0, at a = 1,8

i.e. µ(1+)− µ(1−) = −σh. Together, this shows9

(4.12)

2
∑
n

2(an, x
∗) = −2β · χ = −β · (µ(1−)− µ(0+)) =

= −β · (µ(∞)− (µ(∞)− µ(1+))− (µ(1+)− µ(1−))− µ(0+))

= β · (Naut − µ(0+) + σh).

Considerations analogous to (4.10), (4.11), but including the assumptions (1.26)–(1.29)10

which contain σh, this time, complete the proof of the lemma. ./11

Proof of theorem 1.2. Let (an, x
∗) enumerate the finitely many Hopf points of A(a),12

at ε = 0, ordered such that 0 < a1 < a2 . . . < aN0 . Recall that a = 0 is a Hopf point if,13

and only if, N ≡ 1− β (mod 4), by proposition 3.2. Fix any 0 < a < a1, in that case,14

and a = 0, otherwise; see (1.31). Similarly, λk(a) = 0 occurs, for any a ≥ 0, if, and15

only if, (−1)Naut = β. By proposition 3.4, we then have aN0 < 1 and we may fix any16

aN0 < a < 1, in that case, and a = +∞ otherwise; see (1.32). To prove theorem 1.217

we invoke corollary 2.4. In the setting (4.1) – (4.5), it is therefore our only remaining18

task to show19

(4.13)

N(ε)∑
n=1

2(an(ε), x∗) 6= 0,

for small enough 0 < ε < ε0, and for all perturbed Hopf points (an(ε), x∗) of the20

perturbed matrix family A(ε, a) in (4.1). Again, an(ε) ∈ J = (a, a) are ordered such21

that22

(4.14) a < a1(ε) < a2(ε) < . . . < aN(ε) < a .

At ε = 0, and for any a ∈ R, the matrix A is block diagonal, with upper left block23

A(a), upper right block εB = 0, and lower right block εD = 0. Standard perturbation24

theory then asserts spec A to be given by two disjoint components:25

(4.15) spec A(ε, a) = (spec A(a) + o(1)) ∪̇ ε(spec D + o(1));

18



see for example [Kato80], section II.6. Uniformity of the spectral splitting for a→∞1

follows from the diagonal limit of a−1A(ε, a). Disjointness, for ε0 small enough and2

uniformly for a ∈ J , follows from proposition 3.1, and the excision of the only zero3

eigenvalue of A at a = 1 in case (−1)Naut = β. By our hyperbolicity assumption4

on D, in theorem 1.2, only the perturbed part specA + o(1) contributes any Hopf5

points to the sum (4.13), and eigenvalues λk = 0 remain excluded in a ∈ J = (a, a),6

for 0 < ε < ε0. Note, however, that the specific finite number N(ε) of Hopf points7

may fluctuate, due to conceivably nontransverse crossings of the Hopf eigenvalues of8

A through the imaginary axis, for a ∈ J and ε = 0. Nevertheless9

(4.16) 2(an(ε), x∗) = −β (−1)M−N sign det D · χ(an(ε), x∗)

allows summation of the crossing numbers χ(an(ε), x∗), over n, to a net crossing number10

χ, as in (4.9), (4.12), with11

(4.17) 2
∑
n

2(an(ε), x∗) = −β (−1)M−N sign det D · (µ(ε, a)− µ(ε, a)).

Here the unstable dimensions µ are evaluated at the fixed boundaries a and a specified12

in (1.31), (1.32), where A is hyperbolic. Since (4.15) implies13

(4.18) µ(ε, a) = µ(0, a), at a = a, a,

lemma 4.1 establishes claim (4.13), for small enough 0 < ε < ε0. This proves our main14

result, theorem 1.2. ./15

We conclude this section with a few comments on the limitations of our result. Re-16

strictions on the globality trichotomy (2.13) of the connected component C, in corollary17

2.4, are caused by our domain U = (J ×RN) \ Ec; see (4.5). Indeed the second option18

of (2.13) calls intersections of ∂C with19

(4.19) ∂U = Ec ∪ ({a, a} × RN)

global. Here we omit a in case a = +∞, of course. Let (an, xn) be a sequence in C20

converging to some (a∞, x∞) ∈ ∂U , with bounded relevant virtual periods qn → q∞ > 0.21

Consider the steady state case (a∞, x∞) ∈ Ec, first. Then (a∞, x∞) is another Hopf22

point, x∞ 6= x∗, which we had discarded before. Such a Hopf point may occur on23

another branch of equilibria, like the nontrivial branch bifurcating from the trivial24

branch E∗ at a = 1, in case (−1)Naut = β. Without further assumptions on such25

nontrivial steady states, this possibility cannot be excluded.26

Let us consider the left boundary a∞ = a next. In case N 6≡ 1 − β (mod 4), the27

left endpoint a = 0 of E∗ is not a Hopf point, for any 0 < ε < ε0. In fact we could28

have safely extended our analysis into negative scaling coefficients a. The only reason29

we did not pursue that direction further was our focus on the sign structure of the30

nonzero diagonal entries −aαm of A; indeed Naut counts autocatalytic αm < 0 in our31

analysis. Reversing all signs of αm, of course, and replacing Naut by N −Naut, the case32

of negative a becomes a trivial corollary.33
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In case N ≡ 1 − β (mod 4), a Hopf point in E∗ of A(a) occurs at a = 0, for ε = 0.1

Without further information on the bifurcation direction of the associated Hopf branch2

of bifurcating periodic solutions (a, x), we cannot make any assertions concerning the3

sign of a, locally, for small ε > 0. We therefore eliminated this case by fixing a left4

boundary a = a > 0 for our domain U , in assumption (1.31).5

Similarly, the right boundary a = a < 1 of (1.32) in case (−1)Naut = β eliminated the6

simple eigenvalue λk = 0 of A, at a = 1, from consideration. Indeed suppose the simple7

eigenvalue λk(a) of order 〈α〉h ·(1−a), is of the same order as the perturbation ε. Then8

we may consider the resulting interaction with εD, . . . as a rank-1 perturbation of the9

(M −N + 1)× (M −N + 1) block matrix10

(4.20)

(
0

D

)
.

By pole assignment, this may result in arbitrary spectrum of order ε, including multiple11

steady state bifurcations and Hopf points. Simple planar examples N = 1, M = 212

illustrate this. Our choice of a < 1 circumvents such complications.13

Finally, our choice of the scaling parameter a prevents meaningful results in case N = 2.14

Indeed the resulting matrices15

(4.21) A(a) =

(
−aα1 β

1 −aα2

)
,

with α2 = (−1)Naut/α1, then provide Hopf points (a, x∗) if, and only if, Naut = 1, |α1| =16

|α2| = 1, β = −1, and |a| < 1. Such an interval of Hopf points violates our condition17

that Hopf points be isolated. We therefore consider N ≥ 3, only, and leave the planar18

case to elementary ODE courses.19

5 Four examples20

We illustrate theorem 1.2 with four examples, in subsections 5.1–5.4 below: the Oreg-21

onator, Volterra-Lotka population dynamics, the citric acid or Krebs cycle, and a gene22

regulatory model for mammalian circadian rhythms. Before we address these spe-23

cific examples, we recall our basic approach in comparison to existing literature, and24

comment on some advantages, generalizations, and limitations.25

Our result is intended as a quick first test to establish the possibility of sustained26

autonomous oscillations in a given network. Many results are available which exclude27

oscillations, particularly within the setting (1.5) of mass action kinetics rj = kjx
yj . We28

have already mentioned [HJ74, Mie17, Fei19] above. Notably, the results in [Fei19] aim29

to hold for all positive values of the reaction coefficients kj. The results in [HJ74, Mie17]30

are possibly subject to some Wegscheider relations, among the reaction coefficients kj,31

to establish the prerequisite existence of a complex balanced equilibrium x∗. For an32

example with detailed balance, we recall the Wegscheider relation (1.11). Complex33

20



balance is not a remedy: after all, there are usually more reaction complexes yj, yj1

than metabolites Xm.2

It is not our concern here, or below, to run mere numerical simulations for one or3

the other parameter set of reaction coefficients. General results on sustained os-4

cillations usually assert the existence of parameters for Hopf points, typically via a5

Routh-Hurwitz criterion in general dimension M . Even with contemporary methods6

of computer algebra, and in small dimensions, this remains a formidable task. See for7

example [GES05, EEetal15] and the references there. Transversality and nonresonance8

conditions for local Hopf bifurcation are usually left unchecked.9

On the surface, we generalize these results in at least two ways. First, our global10

approach only requires net crossing numbers χ, alias sums of center indices 2, rather11

than detailed local analysis. Second, we allow for quite general reaction rate functions12

rj = rj(x), rather than just mass action kinetics. That much “generality”, however,13

comes with a twist. A third, and quite substantial, generalization to reversible fast14

N -cycles with positive feedback arises in the framework of Jacobi systems (1.12), on15

the basis of proposition 3.1 and [FuOl88]. We do not pursue that direction further,16

here.17

Let us address the twist of “generality”, which is directed against mass action. The18

very setting (1.20) of a fast N -cycle A in the Jacobian fx = (fmm′) at steady state19

x∗ requires the freedom of a decomposition of the partial derivatives fmm′ , alias the20

partials rjm = ∂xmrj(x
∗), into the fast N -cycle A and the slow remaining partials of21

order ε, independently from the fixed rates rj(x
∗) themselves which determine the pre-22

scribed steady state x∗. Already Michaelis-Menten kinetics (1.6) provide such freedom23

of choice:24

(5.1) rjm/rj = ∂xm log rj =
yjm
x∗m

1

1 + cjmx∗m
∈ (0, 1) · yjm/x∗m.

Here we may choose x∗m as small as we like to guarantee any required range of rjm,25

even for prescribed rj(x
∗). We thus assumed our choice of A, and the slow-fast decom-26

position (1.20) on the linear level, to be independent from x∗. See also our sensitivity27

analysis [BFie18] which is based on the same concept. Evidently such independence of28

rjm from rj fails in the pure mass action case, where all cjm = 0.29

A second caveat concerns our choice of the distinguished bifurcation parameter a > 0 in30

our normalization (1.24), am = aαm,
∏
αm = ±1, of the diagonal entries am = −fmm31

of the fast N -cycle A. Already for N=2, this scaling prevented a meaningful discussion32

of 2-cycles, because the necessary 2× 2 Hopf condition 0 = tr A = a(α1 + α2) became33

invariant under a. For general N , for example, consider the presence of an invariant34

stoichiometric subspace:35

(5.2) cT · (yj − yj) = 0,

for some j and some c 6= 0. Indeed, (5.2) implies time invariance of any affine hyper-36

plane cTx = const. under the network ODE (1.1). For the N -cycle A, this implies37

cTA = 0, i.e.38

(5.3) acm−1αm−1 = cmβm,

21



for all m (mod N). In particular, the characteristic polynomial (3.8) then reads1

(5.4) 0 = a−Np =
N∏
m=1

(λ/a+ αm)−
N∏
m=1

αm,

if we assume all cm are nonzero, on the N -cycle A. Thus all eigenvalues λ simply2

scale radically outward with a, from λ = 0 – quite adverse to Hopf bifurcation. For3

this formal reason, for example, we do not treat the replicator equation or Eigen’s4

hypercycle below, which is normalized to the stochastically motivated invariance x1 +5

. . . + xN = 1. Of course, we may select other 1-parameter paths am = am(a) in such6

cases, which are more hospitable towards global Hopf bifurcation as in corollary 2.4.7

Or else, we may look for fast N -cycles, in the present setting, which are supported only8

on those metabolites m for which cm = 0, if any.9

5.1 Oregonators10

The celebrated standard Oregonator [F07] is the simplest, chemically somewhat real-11

istic, model of the Belousov-Zhabotinsky oscillatory reaction mechanism; see [Zha91,12

Zha07]. In our notation (1.1) the model can be written as13

(5.5)

ẋ1 = r1(x2)− r2(x1, x2) +r3(x1)− r4(x1)
ẋ2 = −r1(x2)− r2(x1, x2) +cr5(x3)

ẋ3 = 2r3(x1) −r5(x3)

with mass action rate laws r1, . . . , r5 and a stoichiometrically motivated “fudge factor”14

c > 0. More generally, we admit arbitrary monotone rate laws rj, e.g. of Michaelis-15

Menten type. For the linearization A = fx(x
∗) in (1.20) we readily obtain16

(5.6) ξ̇ =

 r′3 − r′4 − r21 r′1 − r22 0
−r21 −r′1 − r22 cr′5
2r′3 0 −r′5

 ξ.

Here we use the abbreviation r′j for rjm, if rj = rj(xm) depends on a single metabolite,17

only. The only feasible N -cycle involving N = 3 = M metabolites is m = (3 2 1),18

(5.7) x2
r1,r2−−→ x1

r3−→ x3
r5−→ x2,

notably with a strongly autocatalytic step r3. Comparison between (5.6) and (1.20)19

also tells us to consider ε := r21 as a small perturbation of the 3-cycle A in (1.22), with20

the normalizations21

(5.8)

aα1 = r′4 − r′3, aα2 = r′1 + r22, aα3 = r′5,

β = sign (r′1 − r22), a3 = (r′1 + r22)r
′
5 · |r′4 − r′3|,

Naut ∈ {0, 1}, (−1)Naut = sign α1 = sign (r′4 − r′3).

Since N = 3 6≡ 0, 2 (mod 4), theorem 1.2 asserts global Hopf bifurcation as follows. If22

β = +1, i.e. for r′1 > r22 at steady state x∗, the restrictions (1.26) and Naut ∈ {0, 1}23

22



require Naut = 0 and σh = −1. These contradictory requirements exclude the case1

β = +1 of a positive feedback cycle (5.7), where r′1 dominates.2

For r′1 < r22, i.e. for a negative feedback cycle β = −1, in contrast, the restrictions3

(1.28) are satisfied if, and only if Naut = 0 or Naut = 1 = −σh. Specifically this leads4

to the two cases5

(5.9)
r′1 < r22 and 0 > r′3 − r′4 , or else

r′1 < r22 and 0 < r′3 − r′4 <
(

1
r′1+r22

+ 1
r′5

)−1
.

In conclusion, (5.9) implies global Hopf bifurcation for the generalized Oregonator with6

a ∈ (0, a), any small 1− a > 0, and ε := r21 small enough, depending on a.7

5.2 Lotka-Volterra networks8

In the introduction we have mentioned the planar Lotka system [Lot1920] for oscillating9

chemical reactions. Independently of this classical “predator-prey” system, Volterra10

[Vol1931] first studied quadratic systems of the form11

(5.10) ẋm = xm(cm +
∑
m′

amm′xm′),

with m = 1, . . . ,M, xm > 0, in the context of ecological population dynamics. See12

[Oli14] for an excellent survey. Usually amm′ , am′m > 0 indicates mutually beneficial13

cooperation or symbiosis between species m and m′, whereas amm′ , am′m < 0 models14

mutually detrimental competition, and amm′ · am′m < 0 is the predator-prey case of15

Lotka. For simplicity, we assume self-limiting self-inhibition amm < 0.16

We may rescale any fixed equilibrium x∗m > 0 to become x∗m = 1, without loss of17

generality. Then the linearization of (5.10) at x∗ is given by18

(5.11) ξ̇ = (amm′) ξ.

In particular we may examine any (relabeled) feedback N -cycle m = (1 . . . N),19

(5.12) β = sign (a12 · . . . · aN−1,N · aN1) = ±1

with normalized diagonal20

(5.13) aαm := −amm > 0,

i.e. Naut = 0. Note σ = sign 〈α〉 = sign 〈1/α〉 = σh = +1.21

For positive feedback N -cycles, conditions (1.26), (1.27) boil down to22

(5.14) N > 5, in case β = +1.

Indeed, suppose N 6≡ 0 (mod 4). Then Naut = 0 in (1.26) and σh = +1 require23

2[N/4] + 1 > 1, i.e. N ≥ 5, for N 6≡ 0 (mod 4). For N ≡ 0 (mod 4), condition (1.27)24

23



and σ = σh = +1 similarly requires N/4 = 0 or |2N/4 − 1| > 1, i.e. N/4 ≥ 2. This1

proves claim (5.14).2

For negative feedback N -cycles, conditions (1.28), (1.29) analogously boil down to3

(5.15) N > 3, in case β = −1.

It remains to specify the parameter region a ∈ (a, a) of global Hopf bifurcation, ac-4

cording to (1.31), (1.32). For case (5.14) we obtain the conditions5

(5.16)
β = +1, N > 5;
a := 0 for N 6≡ 0 (mod 4), else a > 0;
a < 1;

since Naut = 0. Similarly, case (5.15) summarizes as6

(5.17)
β = −1, N > 3;
a := 0 for N 6≡ 2 (mod 4), else a > 0;
a := ∞.

Assuming other interactions amm′ to be of sufficiently small order ε, and hyperbolicity7

of the diagonal block εD complementary to the N -cycle m = (1 . . . N), theorem 1.28

implies global Hopf bifurcation for parameters a ∈ (a, a) as described in (5.16), (5.17).9

5.3 Citric acid cycles10

The citric acid cycle (CAC) or Krebs cycle is a central hub of the oxidative energy11

metabolism in any cell; see for example [BTGS15], chapter 17. Although variants12

depend on taxonomy, the following cycle of enzymatic Michaelis-Menten reactions is a13

central feature:14

(5.18) rm : Xm → Xm+1, m (mod 8) .

Here X1 = Citrate, X2 = Isocitrate, X3 = α-Ketoglutarate, X4 = Succinyl-CoA, X5 =15

Succinate, X6 = Fumarate, X7 = Malate, and X8 = Oxaloacetate. Side reactions and16

regulatory influences are omitted. Oscillations have been observed, experimentally, in17

mitochondria extracts of liver and pancreatic cells; see [MacDetal03]. One motivation18

is to understand oscillations in insulin production.19

In absence of self-regulation, the fast monomolecular feedback 8-cycle (5.18) with rates20

rm = rm(xm) does not provide global Hopf bifurcation. Indeed, linearization of (5.18)21

at a steady state x∗ provides the fast cycle A in (1.22), with am = r′m = βm+1. This22

determines the scaling parameter a to be fixed at a = 1; see (1.24). Moreover λ0 = 0 is23

the eigenvalue with maximal real part, by its positive (left) eigenvector and for positive24

feedback β = +1; see propositions 3.1, (3.2)(i). In particular, the steady state x∗ is25

linearly stable and Hopf bifurcation is excluded.26

Regulatory and self-regulatory controls of the CAC (5.18), however, are biologically27

essential. Otherwise energy conversion would run high, for no reason and with nowhere28

24



to go. In our setting, regulatory feedbacks are the primary focus. Consider an arbitrary1

M -cycle (5.18), with m (mod M). Assume, however, that metabolite XN up- or down-2

regulates reaction r0 : X0 → X1, enzymatically, i.e. without any appreciable effect on3

the mass balance of XN itself. In other words,4

(5.19) r0 = r0(x0, xN) ,

and rm = rm(xm) remains monomolecular for all m 6= 0. Deviating from our standing5

monotonicity assumption (1.7) on the partial derivatives rjm we will also admit r0N < 06

here, to account for inhibitory regulation of reaction r0 by metabolite XN . Most7

importantly, we assume r00 to be small of order ε, along with all other partial derivatives8

outside the fast N -cycle m = (1 . . . N) defined by r′1, . . . , r
′
N , and r0N . This provides a9

fast N -cycle matrix A, as in (1.22), given by10

(5.20) am = r′m, βm = r′m−1, except for β1 = r0N < 0,

with m = 1, . . . , N . Normalization yields11

(5.21) αm > 0, Naut = 0, β = sign r0N , and aN = |r′N/r0N |.

In particular our previous Lotka-Volterra discussion of section 5.2 applies. Specifically12

for negative feedback β = −1, we obtain global Hopf bifurcation for any cycle length13

N ≥ 3; see (5.15).14

Let us return to the CAC case (5.18) of the experiments in [MacDetal03]. The following15

four regulatory terms are listed there:16

(5.22)

r8(x8, x1), with N = 1;

r8(x8, x4), with N = 4;

r3(x3, x4), with N = 1;

r5(x5, x8), with N = 3.

All these regulations act by enzyme inhibition, i.e. β = −1. The only exception,17

excitatory self-regulation of rr(x3) by the input x3 itself, can be subsumed into the18

definition of the rate r3 and is therefore omitted. Regulation with N = 1 has to be19

considered small, in our setting, because it is anticipatory, on the wrong side of the20

diagonal of A, along the 8-cycle (5.20). Therefore (5.15) only provides global Hopf21

bifurcation by the two inhibitory feedbacks r8(x8, x4) and r5(x5, x8), separately, on22

a ∈ (0,∞) and under suitable smallness and nondegeneracy conditions for the large23

number of remaining entries in a full model of the CAC metabolism.24

In summary, our result for N = 4 in (5.22) points at the inhibitory effect of X4 =25

Succinyl-CoA on the Citrate synthase reaction r8, which produces X1 = Citrate from26

X8 = Oxaloacetate, as a possible regulatory source of the observed oscillations.27

Similarly, N = 3 in (5.22) points at the inhibitory effect of X8 = Oxaloacetate on the28

Succinate dehydrogenase reaction r5 from X5 = Succinate to X6 = Fumarate, as a29

second possible regulatory cause of the observed oscillations.30
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5.4 Circadian gene regulation1

Gene regulatory mechanisms for circadian rhythms, on the cell level, have received con-2

siderable attention over the past decades; see [Lal17] for some references concerning3

drosophila. A gene regulatory model for cells in the suprachiasmatic nucleus of mam-4

mals was developed, among others, by [Miretal09]; see [MFieMKS13] for simulations5

of periodic orbits in that model. The model involves a total of M = 21 components,6

with 8 gene activities transcripted intro mRNAs, 8 corresponding proteins, and 5 het-7

erodimers of proteins. Below we write gene activities in small italics, and proteins in8

capitals. Except for dimerizations, all reactions are of Michaelis-Menten type (1.6),9

with numerous enzyme inhibitory feedback cycles. To indicate such inhibition of a10

reaction j : Xm → Xm by a metabolite Xm′ we write Xm′ a (Xm → Xm). Gene11

transcription in itself does not lower gene activity; rather we we may consider such12

steps j : yj → yj as autocatalytic, yjm = yjm 6= 0, in the language of (1.3), without13

depleting xm. We indicate such steps by arrows 7→. Finally, all components are subject14

to linear decay rates.15

We do not bother to write down the complete model network, the ODE model, or any16

of the more than 150 rate coefficients, many of them guesswork anyway. Instead we17

highlight the following cycles:18

(5.23)
PERm + CRYn → PERmCRYn a (CLKBMAL→ perm) 7→ PERm ;

PERm + CRYn → PERmCRYn a (CLKBMAL→ crym) 7→ CRYm ;

19

(5.24)
PERmCRYn a (CLKBMAL→ rev-erbα) 7→ REV-ERBα a

a (cryn 7→ CRYn)→ PERmCRYn ;

20

(5.25)
PERmCRYn a (CLKBMAL→ rorc) 7→ RORc→

→ cryn 7→ CRYn → PERmCRYn .

Here m,n ∈ {1, 2} distinguish two variants of the per, cry genes and PER, CRY pro-21

teins. Since all components xm are subject to decay, and in absence of strong auto-22

catalysis, we obtain corresponding fast N -cycles A with positive αm, in (1.22). In23

particular Naut = 0, σ = σh = 1, with arbitrary a > 0, and β = ±1 as follows:24

(5.26)

N = 3, β = −1 in (5.23);

N = 4, β = +1 in (5.24);

N = 5, β = −1 in (5.25).

For the positive fast feedback cycle N = 4 in (5.24), our analysis (5.16) in the Lotka-25

Volterra section 5.2 requires N > 5, and hence fails to assert global Hopf bifurcation.26

For the negative fast feedback cycles N = 3, 5 in (5.23), (5.25), in contrast, our analysis27

(5.17) in the same section 5.2 does assert Hopf bifurcation, under the usual smallness28

and hyperbolic nondegeracy conditions. This result holds globally, for the whole inter-29

val of scaling parameters a ∈ (0,∞).30
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